When the body is launched up:
Let k be the coefficient of friction, u the velocity of projection and t the distance traversed along the incline. Retarding force on the block =mgsinα+k mgcosα and hence the retardation =gsinα+kgcosα.
Using the equation of particle kinematic along the incline,
0=u2−2(gsinα+k gcosα)l
or, l=u22(gsinα+kgcosα)
and 0=u−(gsinα+kgcosαt)
or, u=(sinα+kgcosα)t
Using (2) in (1)l=12(gsinα+kgcosα)t2
Case (2). When the block comes downward, the net force on the body
=mgsinα−km g=cosα and hence its acceleration =gsinα−kgcosα
Let, t be the time required then,
i=12(gsinα−kgcosα)t′2
From Eqs (3) and (4)
t2t′2=sinα−kcosαsinα+kcosα
But tt′=1η
Hence on solving we get
k=(η2−1)(η2+1)tanα=0.16
Therefore 100k =16