The correct option is D 1√2
Let, the object moves a distance d before coming to rest.
While the object is moving up, friction acts down the incline.
a1=−g(sinθ+μcosθ)
Using kinematic equations,
v2=u2+2as
Here, v=0
⇒u2=2dg(sinθ+μcosθ) ....(1)
While coming down, friction acts up the incline,
a2=g(sinθ−μcosθ)
Using kinematic equations,
v2=u2+2as
Here, u=0
v2=2dg(sinθ−μcosθ) ....(2)
Using equations (1) and (2),
v2u2=tanθ−μtanθ+μ
Given, μ=1√3 and θ=60∘
⇒v2u2=tan60∘−1√3tan60∘+1√3
⇒v2u2=√3−1√3√3+1√3
⇒v2u2=12
⇒vu=1√2
Hence, option (d) is correct.