A solid is in the shape of a frustum of a cone. The diameters of the two circular ends are 60 cm and 36 cm and the leight is 9 cm. Find the area of its whole surface and the volume.
Soln:
given height of the frustum cone = 9 cm
Lower end radius r1=602=30 cm
Upper end radiusr2=362=18 cm
Let slant height of the frustum cone be L
L=√(r1−r2)2+h2
L=√(18−30)2+92=√144+81=15 cm
Volume of the frustum cone=13π(r21+r22+r1r2)h
=13π(302+182+30×18)×9=5262π cm3
Total surface area of frustum cone=π(r1+r2)L+πr21+πr22
=π(30+18)×15+π×302+π×182=π(720+900+324)=1944π cm2
∴∴ total surface area = 1944 πcm2