The correct option is B S2 > S1
Let the radius of bigger sphere be R and smaller one be r1,r2,r3...,rn
Thus, volume of bigger sphere = sum of volumes of smaller spheres.
43πR3=43π(r13+r23+r33...+rn3)....(I)
Now, S1=4πR2
S2=4π(r21+r22+r23+....+r2n)
From (I), we get
R3=r31+r32+r33+.....+r3n
If all smaller spheres are of equal radius:
R3=nr3
Now, S1S2=R2nr2=(nr3)23nr2 = n23n
⇒nS1=n23S2
⇒n13S1=S2
Thus, S2>S1
Hence, option 'B' is correct.