Charge enclosed within the sphere upto radius r is given by:q=∫r0kra4πr2dr
⇒q=4πkr3+a3+a∣∣∣r0=4πk(3+a)r3+a ........(1)
At r=R/2 electric field is given as , E1=q4πε0(R/2)2
Substituting (1) at (r=R2) in the above equation,
E1=14πϵ0×4πk(3+a)(R/2)3+a(R/2)2
⇒E1=kϵo(3+a)(R2)1+a
At r=R, electric field is given as ,E2=q4πε0R2
Substituting (1) at (r=R) in the above equation,
E2=14πϵ04πk(3+a)(R)3+aR2
⇒E2=kϵ0(3+a)R1+a
Given that , E2=E18
⇒(R2)1+a=(R)1+a8
⇒1+a=3
⇒a=2
Accepted answer : 2