A solid sphere of radius R is set into motion on a rough horizontal surface with a linear speed v0 in forward direction ad an angular velocity ω0=v02R in counter clockwise direction as shown in figure. If co-efficient of friction is μ, then find
(i)The time after which sphere starts pure rolling,
(ii)The work done by friction over a long time
t=3v07mug,W=−928mv20
As the sphere is slipping, kinetic friction will act,
fk=μmg,acm=fkm=μg,
α=fkRICM=μmgR25mR2=5μg2R
when the sphere starts pure rolling, velocity v of com will be ωR.
v=v0−μgt
ω=−ω0+αt
for pure rolling,
v=ωR
⇒v0−μgt=−(−ω0+αt)R
⇒v0−μgt=(−v02R+5μgt2R)R
⇒3v02=72μgt⇒t0=3v07μg
(b) Friction will not do any work when pure rolling starts.
∴friction does work only when
0<t<3v07μg
Wf= Change in KE
KEf=12mv2+12ICMω2
v=v0−μgt0=v0−μg3v07μg=4v07
ω=47v0R
KEf=12×m×(4v07)2+12×25mR2(47v0R)2
KEi=12mv20+12(25mR2)(v02R)2)
⇒Wf=−928mv20