A solid uniform disc of mass m rolls without slipping down a fixed inclined plane with an acceleration a. The frictional force on the disc due to surface of the plane is :
A
2ma
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
32ma
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ma
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12ma
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D12ma We first draw the free body diagram. We get the equation as fs=mgsinθ−ma here fs is the frictional force and ma is the inertia force. Now using the relation a=gsinθ1+k2r2 for a rigid body descending down an inclined plane we substitute gsinθ. Thus we get fs=ma(1+k2r2)−ma Now for a solid uniform disc we have k as r√2 Thus we get fs=ma(1+12−1) or fs=12ma