The correct option is C (136,116)
cos2πx−sin2πy=12
⇒cos(π(x+y)) cos(π(x−y))=12
[∵cos(A+B)cos(A−B)=cos2A−sin2B]
⇒cos(π(x+y)) cos(π3)=12
⇒cos(π(x+y))=1
⇒π(x+y)=2nπ, where n∈Z
⇒x+y=2n and x−y=13
⇒x=n+16 and y=n−16
(x,y)=(n+16,n−16) which is satisfied by (136,116) for n=2.