Each subpart: 3 Marks
a) We know that the roots of a quadratic equation are given by: −b+−√b2−4ac2a
On substituting the values we get:
x=3±√(−3)2−4×5×(−4)2×5=3±√9+8010=3±9.43310Either x=3+9.43310 or x=3−9.43310⇒x=12.43310=1.24 or x=−6.43310=−0.643.
b)
We have
px2−4x+3=0
Comparing it with
ax2+bx+c=0,
we get a = p, b = -4 and c = 3.
Now for equal roots,
b2−4ac=0⇒(−4)2−4×p×3=0
⇒16−12p=0⇒12p=16
⇒p=1612=43.