The correct option is C 5
Given
A(6,0,0)
B(0,4,0)
C(0,0,2)
D(0,0,0)
let R(a,b,c) be the centre of sphere and r will be perpendicular from R to each plane
eq of plane ABC
formula to find eq of plane from three points
∣∣
∣∣x−x1y−y1z−z1x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1∣∣
∣∣=0
∣∣
∣∣x−6y−0z−00−64−00−00−60−02−0∣∣
∣∣=0
∣∣
∣∣x−6yz−640−602∣∣
∣∣=0
(x−6)(8)−y(−12)+z(+24)=0
8x−48+12y+24z=0
2x+3y+6z=12
perpendicular distance r from point R(a,b,c)
formula
distance=∣∣∣ax1+by1+cz1+d√a2+b2+c2∣∣∣
Here a=2,b=3,c=6,d=−12 and x1,y1,z1 are coordinates of point R
r=∣∣
∣∣2a+3b+6c−12√22+32+62∣∣
∣∣
r=∣∣∣2a+3b+6c−12√4+9+36∣∣∣
r=∣∣∣2a+3b+6c−12√49∣∣∣
r=∣∣∣2a+3b+6c−127∣∣∣---------(1)
eq of plane ABD
formula to find eq of plane from three points
∣∣
∣∣x−x1y−y1z−z1x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1∣∣
∣∣=0
∣∣
∣∣x−6y−0z−00−64−00−00−60−00−0∣∣
∣∣=0
∣∣
∣∣x−6yz−640−600∣∣
∣∣=0
(x−6)(0)−y(0)+z(+24)=0
24z=0
z=0
perpendicular distance r from point R(a,b,c)
formula
distance=∣∣∣ax1+by1+cz1+d√a2+b2+c2∣∣∣
r=∣∣
∣∣c√12∣∣
∣∣
r=∣∣∣c√1∣∣∣
r=c------(2)
now for plane ACD
formula to find eq of plane from three points
∣∣
∣∣x−x1y−y1z−z1x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1∣∣
∣∣=0
∣∣
∣∣x−6y−0z−00−60−02−00−60−00−0∣∣
∣∣=0
∣∣
∣∣x−6yz−602−600∣∣
∣∣=0
(x−6)(0)−y(−12)+z(0)=0
12y=0
y=0
perpendicular distance r from point R(a,b,c)
formula
distance=∣∣∣ax1+by1+cz1+d√a2+b2+c2∣∣∣
r=∣∣
∣∣b√12∣∣
∣∣
r=∣∣∣b√1∣∣∣
r=b------(3)
eq of plane BCD
formula to find eq of plane from three points
∣∣
∣∣x−x1y−y1z−z1x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1∣∣
∣∣=0
∣∣
∣∣x−0y−4z−00−00−42−00−00−40−0∣∣
∣∣=0
∣∣
∣∣xy−4z0−420−40∣∣
∣∣=0
(x)(−8)−(y−4)(0)+z(0)=0
8x=0
x=0
perpendicular distance r from point R(a,b,c)
formula
distance=∣∣∣ax1+by1+cz1+d√a2+b2+c2∣∣∣
r=∣∣
∣∣a√12∣∣
∣∣
r=∣∣∣a√1∣∣∣
r=a------(4)
from eq (1),(2),(3) and (4)
r=∣∣∣2a+3b+6c−127∣∣∣=a=b=c
here putting value of a,b,c in eq(1)
r=∣∣∣2r+3r+6r−127∣∣∣
opening modulus with positive sign
r=11r−127
7r=11r−12
4r=12
r=124
r=31
here 3 and 1 are not co prime so rejected
now opening modulus with negative sign
r=−11r−127
7r=−11r+12
18r=12
r=1218
r=23
Here 2 and 3 are co prime no so we accept them
m+n=2+3=5