The correct option is D |→VC−→VA|=2|→VB−→VC|
Assume R is the radius of the sphere and ω is angular velocity (clockwise).
Then,
→VC=→VB+→VC,B
⇒→VC−→VB=ωR ^i ...(i)
[→VC,B=ω(−^k)×R(^j)=ωR ^i]
→VA=→VB+→VA,B
⇒→VA−→VB=ωR(−^i)
[→VA,B=ω(−^k)×R(−^j)=ωR (−^i)]
⇒→VB−→VA=ωR ^i ...(ii)
From Eq. (i) and (ii) ⇒ (i) + (ii)
→VC−→VA=2ωR ^i ...(iii))
From Eq. (1) →VB−→VC=ωR(−^i) ...(iv)
From equation (i), (ii), (iii) & (iv) we can say
→VC−→VA≠2(→VB−→VC)
Option A is incorrect.
→VC−→VB=→VB−→VA (from Eq (1) & (ii))
Option B is correct.
|→VC−→VA|=2ωR and |→VB−→VC|=ωR
So, |→VC−→VA|=2|→VB−→VC|
Option C is correct.
Given, rolling without slipping
So, VA=0
VB−ωR=0
VB=ωR
|→VB|=ωR ...(v)
Thus |→VC−→VA|≠4|→VB|
Option D is incorrect.