A sphere of radius R carries charge density proportional to the square of the distance from the center. ρ=Ar2, where A is a positive constant. At a distance of R/2 from the center, the magnitude of the electric field is :
A
A/4πϵ0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
AR3/40ϵ0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
AR3/24ϵ0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
AR3/5ϵ0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CAR3/24ϵ0 Accordingtoquestion..............chargedensityP=chargeenclosedVolumeofsphere=QV=Q43πr3fromGaussLaw:ElectricfieldEatdistancerfromcentre=QA.E0=p.VA.E0=p.(43πr3)4πr3=pr3.E0ElectricfieldatdistanceR2fromcentre=p(R2)3.E0Also,p=Ar2so,patR2=A×R24ElectricfieldatdistanceR2fromcentre=[A.R24](R2)3.E0=A.R324.E0sothatthecorrectoptionisC.