The correct option is
A y(cosα+sinα)+x(cosα−sinα)=aLine OA makes an angle α with x-axis and OA=a, then coordinates of A are (acosα,asinα)
Also OB⊥OA
Then, OB makes an angle (90+α) with x-axis, then coordinates of B are $(-a\sin\alpha,a\cos\alpha)
Equation of the diagonal not passing through origin is,
(y−asinα)=acosα−asinα−asinα−acosα(x−acosα)
(sinα+cosα)(y−asinα)=(sinα−cosα)(x−acosα)
(sinα+cosα)y−asinα(sinα+cosα)=(sinα−cosα)x−acosα(sinα−cosα)
y(sinα+cosα)+x(cosα−sinα)=asinα(sinα+cosα)−acosα(sinα−cosα)
=a(sin2α+sinαcosα−cosαsinα+cos2α)
∴y(sinα+cosα)+x(cosα−sinα)=0