wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A square tower stands upon a horizontal plane. From a point in this plane from which three of its upper corners are visible, their angular elevations are 45o,60o and 45o. If h is the height of the tower and α the breadth of one of its sides then show that ha=6(5+1)4

Open in App
Solution

Let ABCD, A', B', C', D' represent the tower on square base ABCD. since the elevations of B' and D' at O are the same each equal to 45o, it follows that the position O of the observer must he on the diagonal CA of the base produced. The elevation of A' at O is 60o. Then from the figure it is clear that
OA=hcot60o=h3
and OB=OD=hcot45o=h.
Also, OAB=135o
Hence from ΔOAB, we have
OB2=OA2+AB22.OA.ABcos135o
or h2=h23+a22(h23).a(12)
or 2h26ah3a2=0
ha=6(5+1)4

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Specific Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon