(a)Till the stone drops through a length
L it will be in free fall. After that
`the elasticity of the string will force it to S.H.M.Let the stone come to rest
instantaneously at y
∴mgy=12R(y−L)2or,mgy=12Ry2−RyL+12RL2or,y=(RL+mg)±√(RL+mg)2−R2L2Ror,y=(RL+mg)±√2mgRL+m2g2R
(b)For maximum velocity instantaneous acceleration is 0
mg−Rx=0 where x is extension from L
Let the velocity be V
∴12mv2+12Rx2=mg(L+x)Now,mg=Rxx=mgR∴12mv2=mg(L+mgR)−12Rm2g2R2∴V2=2gL+mgRV=(2gL+mg2R)1/2
(c)Consider the particle at an instantaneous position y
md2ydt2=mg−k(y−l)or,d2ydt2+km(y−L)−g=0Letz=km(y−L)−g∴d2zdt2+Rmz=0∴z=Acos(wt+ϕ)wherew=√Rmor,y=(L+mRg)+A′cos(wt+ϕ)
Thus, the stone perform S.H.M with angular frequency w about the point
y0=L+mRg