A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30∘, which is approaching the foot of the tower with a uniform speed. 12 seconds later, the angle of depression of the car is found to be 60∘. Find the time in seconds taken by the car to reach the foot of the tower from this point.
6
Let DB = x
In ΔBDC,
BC = x√3
In ΔABC,
AB = BC√3 = 3x
Hence, AD = AB - DB = 2x
If a car takes 12s to travel 2x, then it will take 6s to travel x.
Hence car reaches the tower in another 6 seconds.