Equation of a conic in polar form is
lr=1−ecosθ
Let the eccentricities of the conies be e1,e2,e3.... and latustrecum l1,l2,l3.... . Let the axes be inclined at angle α1,α2,α3.... then
lSP1=1−e1cos(θ−α1)⇒1SP1=1−e1cos(θ−α1)l
Similarly lSP2=1−e2cos(θ−α2)
⇒1SP2=1−e2cos(θ−α2)l
Given 1SQ=1SP1+1SP2......
⇒1SQ=1−e1cos(θ−α1)l1+1−e2cos(θ−α2)l2......⇒1SQ=(1l1+1l2.....)−(e1l1cos(θ−α1)+e2l2cos(θ−α2)......)
This is equation of form 1r=1l−elcos(θ−α)
Hence it represents a conic with focus S′ and latusrectum L
where 1L=1l1+1l2+1l3.....
Hence proved