Given that θ=300
Therefore, ⇒m=tanθ=tan(300)=1√3
Given that the line has slope 1√3 and passes through P(2,2)
⇒y−y1=m(x−x1)
⇒y−2=1√3(x−2) ..(1)
Let the required points be (x3,y3) and (x4,y4)
Given that this point is 4 units from P and lies on the line (1)
Thereore, ⇒√(x3−2)2+(y3−2)2=4
⇒(x3−2)2+(y3−2)2=16
⇒(x3−2)2+13(x3−2)2=16 (from (1))
⇒43(x3−2)2=16
⇒(x3−2)2=12
⇒(x3−2)=±2√3
⇒x3=2±2√3
Substituting these values in (1) we get
⇒(x3,y3)=(2+2√3,4) and (x4,y4)=(2−2√3,0)