A Straight line through p(-15, -10), meets the straight line x - y -1 = 0, x + 2y = 5 and x + 3y = 7 respectively at A,B and C. If 12PA+40PB=52PC, then prove that the straight line passes through origin.
Open in App
Solution
Parametric form of straight line is.
x−x1cosθ=y−y1sinθ=l
Given (x1,y1)=A(−15,−10)
∴x=rcosθ−15,y=rsinθ−10
for L1⇒x−y−1=0
L1=r1cosθ−15−r1sinθ+10−1=0
r1=6cosθ−sinθ=AB
Similarly for L2&L3
L2:r2cosθ−15+2r2sinθ−20=5
r2=40cosθ+2sinθ=AC
L3:r3cosθ−15+3r3sinθ−30=7
r3=52cosθ+3sinθ=AD
12AB+40AC=52AD
12r1+40r2=52r3
=2(cosθ−sinθ)+cosθ+2sinθ=cosθ+3sinθ
2cosθ=3sinθ
tanθ=2/3
m=2/3
Equation of the passing through A(−15,−10) with slope 2/3