The correct option is D 0
Equation of Circle:-
(x+1)2+(y−1)2=√2
Let x+1=X⇒x=X−1
y−1=Y⇒y=Y+1
∴X2+Y2=√2
Let the parametric points on X2+Y2=√2
X=rcosθ
Y=rsinθ
Now, Equation of Surface:
S(x,y)=2x+5y−3
⇒=2(X−1)+5(Y+1)−3
⇒=2X+5Y
∴I=∫SS(x,y)dxdy
=∫SS(r,θ)rdrdθ
=∫S[2(rcosθ)+5(rsinθ)]rdr.dθ
=∫Sr(2cosθ+5sinθ).rdr.dθ
=∫S(2cosθ+5sinθ)r2drdθ
=∫r0r2dr.∫2πθ=0(2cosθ+5sinθ)dθ=0