The correct option is
A 325Let U = set of television viewers, F = set of football viewers, H = set of hockey viewers and B = set of basket-ball viewers.
∴n(F)=285,n(H)=195,n(B)=115,n(F∩B)=45,
n(F∩H)=70,n(H∩B)=50,n(F′∩H′∩B′)=50
We have, n(F′∩H′∩B′)=n(U)−n(F∪H∪B)
∴50=500−n(F∪H∪B)⇒n(F∪H∪B)=500−50=450
Also, n(F∪H∪B)=n(F)+n(H)+n(B)−n(F∩H)−n(H∩B)−n(F∩B)+(F∩H∩B)
⇒450=285+195+115−70−50−45+n(F∩H∩B)
⇒450=430+n(F∩H∩B)
⇒n(F∩H∩B)=450−430=20.
(i) Number of viewers of all games =n(F∩H∩B)=20.
(ii) Number of viewers who watch exactly one game =n((F∩H′∩B′)∪(F′∩H∩B′)∪(F′∩H′∩B))
=n(F∩(H′∩B′))+n(H∩(F′∩B′))+n(B∩(F′∩H′))
=n(F∩(H∪B)′)+n(H∩(F∪B)′)+n(B∩(F∪H)′)
=[n(F)−n(F∩(H∪B))]+[n(H)n(H∩(F∪B))]+[n(B)−n(B∩(F∪H))]
=[n(F)−n((F∩H)u(F∩B))]+[n(H)−n((H∩F)u(H∩B))]+[n(B)−n(B∩F)u(B∩H))]
=n(F)−{n(F∩H)+n(F∩B)−n((F∩H)n(F∩B)}+n(H)−n(H∩F)+n(H∩B)−n((H∩F)n(H∩B))+n(B)−n(B∩F)+n(B∩H)−n((BF)n(B∩H))=n(F)+n(H)+n(B)−2{n(F∩H)+n(F∩B)+n(H∩B)}+3n(F∩H∩B)
=285+195+115−2(70+45+50)+3(20)=325.