20, Only football 190 etc.
Given N=500, n(F)=285,
n(H)=195,n(B)=115,n(F∩B)=45,
n(F∩H)=70,n(H∩B)=50,
n(F′∩H′∩B′)=50.
To find n(F∩H∩B),n(F∩H′∩B′),n(F′∩H∩B′)and n(F′∩H′∩B)
we have
50=n(F′∩H′∩B′)=n(F∪H∪B)′,
By De-Morgan law
=N−n(F∪H∪B)=N−{S1−S2+S3}
=N−{n(F)+n(H)+n(B)−n(F∩H)−n(H∩B)−n(B∩F)+n(F∩H∩B)}
=500−285−195−115+70+50+45−n(F∩H∩B)
=665−595−−n(F∩H∩B)
=70−n(F∩H∩B)
∴n(F∩H∩B)=20
Again, n(F∩H′∩B′)={F∩(H∪B)′}
By De-Morgan law
=n(F)−{F∩(H∪B)}
=n(F)−n{(F∩H)∪(F∩B)}
=N(F)−n{n(F∩H)+n(F∩B)−n(F∩H∩B)}
=285−70−45+20=190