A symmetrical 3-hinged parabolic arch of span ′l′ and rise 'h' carries a point load 'W' which may be placed anywhere on the span. The distance of the section where maximum bending moment occurs from crown will be
Va=W(l−x)l,Vb=Wxl
ΣMC=0(Fromrightend)⇒H×h=Wxl×l2
⇒H=Wx2h
∴BMx=W(l−x)l×x−Wx2h×4hl2x(l−x)
⇒BMx=Wx(l−x)l−2Wl2x2(l−x)
The maximum B.M. occurs under the load.
∴ d(BMx)dx=0;
⇒Wl(l−2x)=2Wl2(2lx−3x2)
For absolute maximum B.M.,
d(BMx)dx=0;
⇒Wl(l−2x)=2Wl2(2lx−3x2)
⇒6x2−6lx+l2=0
⇒x=6−2√312l(sinx<12)
⇒x=l2−l2√3fromA
∴ From crown, distance of maximum B.M. on either side=l2−x=l2√3