The correct option is
A (−6,−7)y=x2+6
Tangent drawn at pt. P(1,7)
⇒y=2x=2 = slope of tangent at P(1,7)
eqn. of tangent : y−7=2(x−1)
⇒y=2x+5
or 2x−y+5=0 __ (1)
eqn. of circle : x2+y2+16x+12y+c=0
⇒(x+8)2+(y+6)2+c−64−36=0
⇒(x+8)2+(y+6)2+c−100=0
⇒ circle is centred at (-8,-6)
⇒(−g,−f)=(−8,−6)
⇒g=8,f=6
Eqn. of circle is of the form of :
x2+y2+2gx+2fy+c=0
where g=8,f=6
Then eqn. of tangent to this circle at Q(x1,y1)
is xx1+yy1+g(x+x1)+f(y+y1)+c=0
or x(x1+g)+y(y1+f)+gx1+fy1+c=0
Comparing it to eqn of tangent of parabola.
2x−y+5=0
⇒x1+g=2
y1+f=−1
⇒x1=2−g=−6
y1=−1−f=−7
⇒Q(x1,y1)=(−6,−7)