A tangent drawn from the point (4, 0) to the circle x2+y2=8 touches it at a point A in the first quadrant. The coordinates of another point B on the circle such that AB = 4 are
x2+y2=(2√2)2,C=(0,0),r=2√2
Let y=mx+2√2√m2+1 be a tangent
To find the tangent through (4,0) substitute into the equation
⟹0=4m+2√2√m2+1
⟹16m2=8(m2+1)
⟹m=−1
Equation is
y=−x+4
Substituting in circle equation
x2+(−x+4)2=8
⟹2x2–8x+8=0
⟹x=2⟹y=2
A=(2,2)
Any point on the circle is given be(2√2cosθ,2√2sinθ)
Let B = (2√2cosθ1,2√2sinθ1)
AB=4⟹AB2=16
⟹(2√2cosθ1,−2)2+(2√2sinθ1−2)2=16
⟹8+4+4–4√2(cosθ1+sinθ1)=16
⟹sinθ1+cosθ1=0
θ1=−π4
B=(2√2×1√22√2×−1√2)=(2,−2)