The correct options are
B y12,a,y2 are in G.P.
C −4,y1y2,x1x2 are in G.P.
D x1x2+y1y2=a2
Let (x1,y1)≡(at2,2at)
Tangent at this point ⇒ty=x+at2
Any point on this tangent ≡(h,(h+at2t)) Chord of contact w.r.t the circle x2+y2=a2
hx+(h+at2)ty=a2
⇒(aty−a2)+h(x+yt)=0
ty−a=0 or x+yt=0
∴ fixed point ≡(−at2,at)
∴x1x2=−a2,Y1Y2=2a2
x1x2=−t4andy1y2=2t2
⇒4x1x2+(y1y2)2=0