E1:x24+y236=1
Equation of any tangent AB to the ellipse E1 is 2xcosθ4+6ysinθ36=1 ⋯(1)
Let tangents at A and B intersect at C(h,k).
Then AB is the chord of contact for E2 w.r.t. point C.
So, equation of AB is T=0
i.e., hx16+ky48=1 ⋯(2)
Comparing (1) and (2), we get
cosθ2=h16, sinθ6=k48
⇒cosθ=h8, sinθ=k8
⇒h2+k2=64
∴p2+32=64 [∵(h,k)≡(p,3)]
⇒p=√55, (∵p>0)