A tangent PT is drawn to the circle x2+y2=4 at the point P(√3,1). A straight line L, perpendicular to PT is a tangent to the circle (x−3)2+y2=1.A possible equation of L is:
The equation of tangent
PT to circle x2+y2=4 at the point P(√3,1) is √3x+y=4.
Let, slope of line L be m.
m×(−√3)=−1(∵ L is
perpendicular to PT)
m=1√3
Any line with slope 1√3 will be of the form
y=1√3x+c
Given that this line is a tangent to the circle
(x−3)2+y2=1
⇒∣1√3−0+c√(1√3)2+(−1)2∣=1
⇒c+√32=±1√3⇒c=−√3±2√3
Equation of line 'L' is
y=1√3x=√3±2√3
√3y=x−3±2
⇒3y=x−5 or √3y=x−1