The correct option is
B (√5,0)The given equation of ellipse is,
x29+y24=1
∴a=3 and b=2
The equation of tangent to the ellipse is given by,
xx1a2+yy1b2=1
∴x(3cosθ)9+y(2sinθ)4=1
∴xcosθ3+ysinθ2=1
To find coordinates of point Q, put x=3 in above equation.
∴3cosθ3+ysinθ2=1
∴cosθ+ysinθ2=1
∴ysinθ2=1−cosθ
∴y=2(1−cosθ)sinθ
∴y=2(2sin2(θ2))2sin(θ2)cos(θ2)
∴y=2tan(θ2)
Thus, coordinates of point Q are Q(3,2tan(θ2))
Similarly, to find coordinates of point P, put x=−3 in equation of tangent.
∴−3cosθ3+ysinθ2=1
∴−cosθ+ysinθ2=1
∴ysinθ2=1+cosθ
∴y=2(1+cosθ)sinθ
∴y=2(2cos2(θ2))2sin(θ2)cos(θ2)
∴y=2cot(θ2)
Thus, coordinates of point P are P(−3,2cot(θ2))
These two points are end-points of diameter of circle. Thus, equation of circle is given by,
(x−x1)(x−x2)+(y−y1)(y−y2)=0
∴(x+3)(x−3)+(y−2cotθ2)(y−2tanθ2)=0
∴x2−9+y2−2y(tanθ2+cotθ2)+4=0
∴x2+y2−2y(tanθ2+cotθ2)−5=0
To find point of intersection of this circle with x-axis, put y=0 in above equation.
∴x2−5=0
∴x2=5
∴x=±√5
Thus, coordinates are (√5,0) and (−√5,0)
Thus, correct option is option (B)