The correct option is A a+b
Given eqn of ellipse
x2a2+y2b2=1
Then eqn of tangent at acosθ,bsinθ is
xacosθ+ybsinθ=1
Now, let the tangent intersects x-axis at M.
So, the coordinates of M is (asecθ,0)
Let the tangent intersects y-axis at N.
So, the coordinates of N is (0,bcosecθ)
Length MN be d=√a2sec2θ+b2cosec2θ
⇒d=√a2+a2tan2θ+b2+b2cot2θ
For maximum or minimum,
d′(θ)=0
⇒2a2tanθsec2θ−2b2cotθcosec2θ2√a2+a2tan2θ+b2+b2cot2θ=0
⇒tan4θ=b2a2
⇒tan2θ=ba
So, at this value of θ, MN is least.
d=√a2+b2+ab+ab=√(a+b)2
Least length of MN =a+b