The correct option is A (x2a2−y2b2)=(x2a2+y2b2)2
Any tangent to the hyperbola x2a2−y2b2=1
is xx1a2−yy1b2=1⋯(1)
Let the mid - point of PQ be (h,k)
Then the equation of the chord bisected at (h,k) to the ellipse is
T=S1⇒hxa2+kyb2=h2a2+k2b2⋯(2)
∵ Equation (1) & (2) are identical.
∴x1h=−y1k=1h2a2+k2b2
x1=h(h2a2+k2b2),y1=−k(h2a2+k2b2)
Putting the values of (x1,y1) in the hyperbola, we get
h2a2−k2b2=(h2a2+k2b2)2
Hence required locus will be
x2a2−y2b2=(x2a2+y2b2)2