Let y be the amount of fertilizer in the tank at time t.V(t)=100gal+(1 gal/min−3 gal/min)(tmin)
=(100−2t)gal
So, Rate out =y(t)V(t) outflow rate
=(y100−2t)3
=(3y100−2t)lbmin
Also,
Rate in =(1lbgal)(1galmin)
=1lbmin
Therefore, the rate of amount fertilizer in the tank is
dydt Rate in - Rate out
=1−3y100−2t
The above differential eqution, can be written as
dydt+3y100−2t=1............(1)
linear differential equation of the first order
y′+P(t)y=f(t)...........(2)
Based on (1) and (2), we obtain
P(t)=3100−2t and f(t)=1
The integrating factor is given by
e∫P(t)dt.............(3)
Use the formula (3), to get integrating factor
e∫P(t)dt=e∫3100−28dt=e−32ln|100−2t|=eln|100−2t|−3/2=(100−2t)−3/2
Thus, the solution is
y(100−2t)−3/2=∫(100−2t)−3/2d+c
y=(100−2t)3/2(1(100−2t)3/2+c)
y=100−2t+c(100−2t)3/2..........(4)
Use the initial condition y(0)=0 to get c.
y(0)=100+c(100)3/2
0=100+c(100)3/2
c=−110
Substitute the value c=−110 in the equation (4).
y(t)+100−2t−110(100−2t)3/2
Differentiating both side with respect to t, we get,
dydt=3√−2t+10010−2
Let dydt=0 then
3√−2t+10010−2=0
3√−2t+10010=2
√−2t+100=203
−2t+100=(203)2
=−2t=(203)2−100
−2t=−5009
t=5009.12
t≈27.8min
So, the maximum amount is
y(27.8)=100−2.27.8−110(100−2.27.8)3/2≈14.8lb
t≈27.8min
The maximum amount is ≈14.8lb