A tea party is arranged for 16 people along two sides of a large table with 8 chair on each side. Four men want to sit on one particular side and two on the other side. The number of ways in which they can be seated is
A
6!8!10!4!6!
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
8!8!10!4!6!
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
8!8!6!6!4!
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B8!8!10!4!6! There are 8 chair on each side of the table.
Let the sides be represented by A and B.
Let four persons sit on side A, then number of ways of arranging 4 persons on 8 chairs on side A=8P4
And two persons sit on side B.
The number of ways of arranging 2 persons on 8 chairs on side B=8P2
The remaining 10 persons can be arranged in remaining 10 chairs in 10! ways. Hence, the total number of ways in which the persons can be arranged is 8P4×8P2×10!=8!8!10!4!6!