A test particle is moving in circular orbit in the gravitational field produced by a mass density ρ(r)=Kr2. Identify the correct relation between the radius R of the particle's orbit and its period T-
A
TR2 is a constant
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
TR is a constant
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
TR is a constant
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
T2R3 is a constant
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CTR is a constant Gravitational force experienced by the test particle is given by,
F=GMmr2=∫Gρ(dV)mr2
=mG∫R0kr24πr2drr2 =−4πkGm[1r]R0 =−4πkGmR
Using newton's second law, we have
mv20R=4πkGmR
⇒v0=C(const.)
Time period, T=2πRv0=2πRC
⇒TR=const.
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
Hence, (A) is the correct answer.