The correct options are
B at time
t=300μs,the speed of the electron will be reduced to zero
C When electron crosses the origin, its kinetic energy reaches the maximum value, equal to 1.28 J
E1=σ2ε0[1−x√x2+R2],along+x−axisE2=−σ2ε0[1−x√x2+r2],along−x−axis
∴E=−σ2ε0[1−1+x√x2+r2−x√x2+R2]=σx2ε0[1√x2+r2−1√x2+R2]
At x<<r, E=σx2ε0(1r−1R)=σ.9x2ε0R=9σ2ε0Rx
Let 'm' be the ,mass of the particle of charge -q
Then, md2xdt2=−9qσ2ε0R.x
ord2xdt2=−9qσ2ε0mR.x⇒SHM
ω=√9eσ2ε0m.1R=2πT
∴T=√8π2ε0mR9qσ
Now,14πε0=9×109,m=1×10−3kg,R=0.5m,q=10×10−3C,σ=10×10−6cm−2
T2=2π×1×10−3×0.59×109×9×10×10−3×10×10−6=10π81×10−6
∴T=19√10π×10−3=5.69×10−3
At t=T2, the particle is at an extreme point on the other side, where its kinetic energy and hence its speed becomes zero.
∴t=T2=2.89×10−3=0.31×10−3s
≃300×10−6s=300μs
At O, the kinetic energy of the particle is, maximum and is given by,
Kmax=12mω2A2,A(amplitude)=0.5cm
=12×1×10−3×4π2×81×10610π×25×10−6
=π×812×10−2≃1.28J