A toy is in the shape of a cone mounted on a hemisphere of same base radius. If the volume of the toy is 231 cm3 and its diameter is 7 cm, find the height of the toy.
Given:
Volume of the toy = 231 cm3
Diameter of the hemisphere = 7 cm
The cone and hemisphere have equal radii.
⇒ Radius of hemisphere = Radius of cone = r = 3.5 cm
Height of hemisphere = Radius of hemisphere = 3.5 cm
Let H be the height of toy.
⇒ H = height of cone + height of hemisphere
⇒ H = h + r, (h = height of cone)
⇒ H = h + 3.5
Now, Volume of toy = Volume of cone + Volume of hemisphere
⇒ Volume of toy =13πr2h+23πr3
⇒ Volume of toy =13πr2(h+2r)
⇒231=(13)×227×(3.5)2(h+2(3.5))
⇒ h+7=(231×3×7)(3.5×3.5×22)
⇒ h+7=18
⇒ h=11 cm
Thus, height of the toy = h + r
= 11 cm + 3.5 cm
= 14.5 cm