We know that tanθ=OppositesideAdjacentside=ABBC
Here, θ=600, BC=20 m and AB=x m, therefore,
tanθ=ABBC⇒tan600=x20⇒√3=x20(∵tan600=√3)⇒x=20√3...........(1)
We also know that cosθ=AdjacentsideHypotenuse=BCAC
Here, θ=600, BC=20 m and AC=y m, therefore,
cosθ=BCAC⇒cos600=20y⇒12=20y(∵cos600=12)⇒y=20×2⇒y=40...........(2)
Now, total length of the tree is x+y=20√3+40=20(√3+2) m.
Hence, the length of the tree is 20(√3+2) m.