A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see given figure). Find the sides AB and AC.
Let the given circle touch the sides AB and AC of the triangle at point E and F respectively and the length of the line segment AF be x.
In △ABC, we have
CF=CD=6 cm (Tangents on the circle from point C)
BE=BD=8 cm (Tangents on the circle from point B)
AE=AF=x (Tangents on the circle from point A)
AB=AE+EB=x+8
BC=BD+DC=8+6=14
CA=CF+FA=6+x
2s=AB+BC+CA
=x+8+14+6+x
=28+2x
∴s=14+x
Area of △ABC=√s(s−a)(s−b)(s−c)
=√(14−x){(14+x)−14}{(14+x)−(6+x)}{(14+x)−(8+x)}
=√(14+x)(x)(8)(6)
=4√3(14x+x2)
Area of ΔOBC=12×OD×BC=12×4×14=28 cm2
Area of ΔOCA=12×OF×AC=12×4×(6+x)=12+2x cm2
Area of ΔOAB=12×OE×AB=12×4×(8+x)=16+2x cm2
Area of ΔABC= Area of ΔOBC + Area of ΔOCA + Area of ΔOAB
4√3(14x+x2)=28+12+2x+16+2x
⇒4√3(14x+x2)=56+4x
⇒√3(14x+x2)=14+x
⇒3(14x+x2)=(14+x)2
⇒42x+3x2)=(196+x2+28x)
⇒42x+3x2=(196+x2+28x)
⇒2x2+14x−196=0
⇒x2+7x−98=0
⇒x2+14x−7x−98=0
⇒x(x+14)−7(x+14)=0
⇒(x+14)(x−7)=0
⇒x=−14 or,x=−7
Either x+14=0 or x−7=0
Therefore, x=−14 and 7
However, x=−14 is not possible as the length of the sides will be negative.
Therefore, x=7
Hence, AB=x+8=7+8=15 cm
CA=6+x=6+7=13 cm