The correct option is
B 15 and
13Let there is a circle having center O touches the sides AB and AC of the triangle at point E and F respectively.
Let the length of the line segment AE is x.
Now in △ABC,
CF=CD=6 (tangents on the circle from point C)
BE=BD=6 (tangents on the circle from point B)
AE=AF=x (tangents on the circle from point A)
Now AB=AE+EB
⟹AB=x+8=c
BC=BD+DC
⟹BC=8+6=14=a
CA=CF+FA
⟹CA=6+x=b
Now
Semi-perimeter, s=(AB+BC+CA)2
s=(x+8+14+6+x)2
s=(2x+28)2
⟹s=x+14
Area of the △ABC=√s(s−a)(s−b)(s−c)
=√(14+x)((14+x)−14)((14+x)−(6+x))((14+x)−(8+x))
=√(14+x)(x)(8)(6)
=√(14+x)(x)(2×4)(2×3)
Area of the △ABC=4√3x(14+x) .............................(1)
Area of △OBC=12×OD×BC
=12×4×14=28
Area of △OBC=12×OF×AC
=12×4×(6+x)
=12+2x
Area of ×OAB=12×OE×AB
=12×4×(8+x)
=16+2x
Now, Area of the △ABC=Area of △OBC+Area of △OBC+Area of △OAB
4√3x(14+x)=28+12+2x+16+2x
4√3x(14+x)=56+4x=4(14+x)
√3x(14+x)=14+x
On squaring both sides, we get
3x(14+x)=(14+x)2
3x=14+x ------------- (14+x=0⟹x=−14 is not possible)
3x−x=14
2x=14
x=142
x=7
Hence
AB=x+8
AB=7+8
AB=15
AC=6+x
AC=6+7
AC=13
So, the value of AB is 15 cm and that of AC is 13 cm. Option B.