REF. Image.
To find: length of side AB
BD = BE = 8cm ; CD = CF = 6 cm ; AE = AF = x
[Length of tangents drawn from an external point to the same circle are equal in length]
arc (ABC) = arc (AOB) + arc (BOC) + arc (AOC)
semi - perimeter =28+2x2=14+x
using Heuon's formula, area of Δ ABC
√s(s−a)(s−b)(s−c) where a,b and c are sides of Δ
are (ABC)=√(14+x)(x)(6)(8)
√(14+x)(x)(48)=12[(14)(4)]+12(4)(6+x)+12(4)(8+x)
√(14+x)(x)(48)=28+12+2x+16+2x
√(x)(48)(14+x)=56+4x
Squaring Both Sides
48x(14+x)=16(x2+196+28x)
42x+3x2=x2+28x+196
2x2+14x−196=0
x2+7x−98=0
By Splitting Middle Team.
x2+14x−7x−98=0
x(x+14)−7(x+14)=0
x = 7 and x≠−14 ( As length can't be negative)
Length of AB = 15 cm