wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A triangle ABC is inscribed in a circle. The bisectors of angle BAC, ABC and ACB meet the circumcircle of the triangle at points P, Q and R respectively. Prove that:
(i) ABC=2APQ,
(ii) ACB=2APR,
(iii) QPR=90012BAC.
1031986_d4b509f57fd24c27a724b09db1237166.png

Open in App
Solution

GivenABCisinscribedinC(0,r).
ThebisectorsofBAC,ABCandACBmeetsthecircumcircle
ofABC,inP,Q,Rrespectively.
InthefigureJoinRQ,
ABQ=APQ(i)
{Anglesinthesamesegmentofacircleareequal}.
ABQ=QBC{BQisthebisectorofABC}.
QBC=APQ(ii)
Adding(i)&(ii)
ABQ+QBC=APQ+APQ
ABC=2APQ(iii)
Similarily,ACB=2APR(iv)
Adding(iii)&(iv)
ABC+ACB=2(APQ+APR)
ABC+ACB=2QPR(v)
InABC,
ABC+BAC+ACB=180{Anglesumproperty}
ABC+ACB=180BAC(vi)
From(v)&(vi),weget
180BAC=2QPR
QPR=12(180BAC)
QPR=12×18012BAC
QPR=9012BAC

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Altitude of a triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon