Since Δ ABC is right-angled,
AB2+AC2=BC2
or, AB2+AC2=(BL+CL)2
or, AB2+AC2=BL2+CL2+2.BL.CL.......(1).
Again from Δ ALC and Δ ALB we have
AC2=AL2+CL2......(2) and AB2=AL2+BL2.....(3).
Adding (2) and (3) we get,
AC2+AB2=2.AL2+CL2+BL2
or, BL2+CL2+2.BL.CL=2.AL2+BL2+CL2
or, AL2=BL.CL.......(4).
Now tan∠ACB=ALCL.......(5) and
tan∠ABL=ALBL
⇒tan(90o−∠BAL)=ALBL
⇒cot∠BAL=ALBL......(6).
From (4) we have ALCL=BLAL
or, tan∠ACB=tan∠BAL[Using (5) and (6)]
or, ∠ACB=∠BAL.