The greatest possible perimeter of the triangle is
43
1.Let a, 3a, 15 be the lengths of the sides
a + 3a > 15 ⇒ a > 3.75 i.e., a ≥ 4 ( a - an integer )--------- (1)
3a < a + 15 ⇒ 2a < 15,a < 15/2= 7.5
∴a ≤ 7--------------------------------------------- ( 2 )
a = 4,5,6,7
Maximum perimeter occurs when a = 7
i.e., sides are 7, 21, 15.
Perimeter = 7 + 21 + 15 = 43.