The correct options are
A a+c√a2+c2−ac=2cosA−C2
B 2sinA2sinC2=sinB2
C a2,b2,c2 are in A.P. if a,b,c are in G.P.
2B=A+C⇒B=π3
cosB=a2+c2−b22ac⇒a2−ac+c2=b2⇒a+c√a2+c2−ac=a+cb⇒a+c√a2+c2−ac=sinA+sinCsinB⇒a+c√a2+c2−ac=2sinA+C2cosA−C2sinB⇒a+c√a2+c2−ac=2cosA−C2
2sinA2sinC2=2√(s−b)(s−c)bc√(s−b)(s−a)ba
=2(s−b)b√(s−a)(s−c)ac
=a+c−bbsinB2=sinB2
a,b,c are in G.P.
⇒ac=b2
Also, cosB=12=c2+a2−b22ca
⇒2b2=c2+a2
∴a2,b2,c2 are in A.P.
a,b,c are in G.P.
⇒a2,b2,c2 are in A.P.
⇒b2−a2=c2−b2⇒sin2B−sin2A=sin2C−sin2B⇒sin2(A+C)−sin2A=sin2C−sin2(A+C)⇒sin(C)sin(2A+C)=−sin(A)sin(2C+A)⇒sin(C)sin(π−(B−A))=−sin(A)sin(π−(B−C))⇒sin(C)[sin(B)cos(A)−cos(B)sin(A)] =−sin(A)[sin(B)cos(C)−cos(B)sin(C)]
⇒sinC(sinBcosA−cosBsin A) =sinA(sinCcosB−cosCsinB)
Dividing both the sides by sinAsinBsinC, we get
cotA,cotB,cotC are in A.P.
⇒tanA,tanB,tanC are in H.P.