wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A tuning fork of frequency 256 Hz produces 4 beats per second with a wire of length 25 cm vibrating in its fundamental mode. The beat frequency decreases when the length is slightly shortened. What could be the minimum length by which the wire be shortened so that it produces no beats with the tuning fork ?

Open in App
Solution

Given that,

I=25 cm =25×102m

By shortening the wire the frequency increases [f=(12I)(Tm)]

As the vibrating wire proudces 4 betas with 256 Hz, its frequency must be 252 Hz or 260 Hz. Its frequency decreases by shortening the wire.

SO, 252=12×25×102(TM).....(1)

Let length of the wire will be I, after it is slightly shortened,

252=12×I1(TM)........(2)

Dividing (1)by (2), we get,

252256=I12×25×102

I1=252×2×25×102256

=0.24609 m

So it should be shorten by (25-24.61)

=0.39 cm.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Interference of Sound
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon