For particle m:
Initial energy,
Ei=−GMmR+0
Final energy,
Ef=−GMmR×32+12mv21
[Potential at the centre of earth = 3/2×Potential at the surface of earth]
For particle 2m:
Ei=−GM(2m)R+0
Ef=−GM(2m)R×32+12×(2m)×(v2)2
Using energy conservation for mass m,
12mv21−32GMmR=−GMmR
⇒v212=32GMR−GMR
⇒v212=GM2R
⇒v1=√GMR
Similarly, for mass 2m,
v2=√GMR
So, v1=v2=v=√GMR
From momentum conservation,
mv−2mv=(m+2m)vo
⇒vo=−v3=−13√GMR
Using energy conservation after collision between the mean position and extreme position,
−32×GMR×3m+12×3m×(−13√GMR)2=−GM2R3[3R2−r2]×3m
On solving this, we get,
r=R3
∴n=3