Let the digits at units and tens places be x and y, respectively.
∴ Product of digits =xy=14
⇒y=14x……(i)
so, the two digit number will be (10y+x)
when the digits will be reversed, then the reversed number will be 10x+y
According to the question, we have
Original No. +45= Reversed No.
⇒(10y+x)+45=10x+y
⇒9y−9x=−45
⇒y−x=−5……(ii)
From (i) and (ii), we get
14x−x=−5
⇒14−x2x=−5
⇒14−x2=−5x
⇒x2−5x−14=0
⇒x2−(7−2)x−14=0
⇒x2−7x+2x−14=0
⇒x(x−7)+2(x−7)=0
⇒(x−7)(x+2)=0
⇒x−7=0orx+2=0
⇒x=7 or x=−2
⇒x=7 (∵ the digit cannot be negative)
Putting x=7 in equation (i), we get: y=2
so, Required number =10×2+7=27