A uniform ball of radius r rolls without slipping down from the top of a sphere of radius R. The angular velocity of the ball when it breaks from the sphere is ω=vr=√10g(R+r)xr2. Find x. Assume initial velocity negligible.
Open in App
Solution
mv2(R+r)=mgcosθ;mgh=12mv2+12Iω2 mg(R+r)(1−cosθ)=12mv2+15mv2=710mv2 107mg(1−cosθ)=mgcosθ mv2=107mg(R+r)(1−cosθ)107=177cosθ Or, cosθ=1017 v=√g(R+r)cosθ=√1017g(R+r) and ω=vr=√10g(R+r)17r2