On inclined plane, the friction applies in up-the-plane direction,
So linear acceleration of centre of mass is a=μgcosα−gsinα
So velocity of CoM is, v=at
The torque due to friction about CoM is, τ=μmgrcosα
So, angular acceleration about CoM is, β=τI=μmgrcosα0.5mr2=2μgcosαr
As initial angular velocity and angular acceleration are in opposite direction. So, ω=ωo−βt
Now, for sliding to stop, v=ωr
⟹(μgcosα−gsinα)t=(ωor−2μgcosαt)
⟹t=ωorg(3μcosα−sinα)
Thus distance traveled before sliding stops is, s=12at2
⟹s=ω2or2(μcosα−sinα)2g(3μcosα−sinα)2