The correct option is
A 2(b3−a3)3b(b2−a2)
The inner radius of sphere is a and outer radius is b. Therefore the mass of the sphere is whose density is p is
M=43πp(b3−a3)
Gravitational potential at a point on outer surface is
Vb=−GMb=−G43πp(b3−a3)b
Now to find gravitational potential at point on inner surface consider a point at a distance r from a and b
Mass of sphere =43πp(r3−a3)
Therefore Gravitational field strength is M=G43πp(r3−a3)r2
Now the relation is g=−dVdr
∴ −∫abg=∫abdVdr=Va−Vb
∴ Va−Vb=4πpa3∫abr3−a3r2dr
∴ Va−Vb=4πpa3[r22+a3r]ab
=43πpa[a22−b22+a3a−a3b]
∴ Va−Vb=4πpa3[3a22−b22−a3b]
Therefore we get
Va=Vb+4πpa3[3a22−b22−a3b]
∴ Va=−G43πp(b3−a3)b+43πph[3a22−b22−a3b]
∴ Va=4πph3[3a22−b22−a3b−b2+a3b]
∴ Va=4πpG3[3a22−3b22]
∴ Ratio is
VbVa=−G43πp(b3−a3)b4πph3[3a22−3b22]
=−b3−a3b3a2−3b22
=−2(b3−a3)3b(a2−b2)=2(b3−a3)3b(b2−a2)